

Problem Sheet 11

Exercise 11.1

Prove that a sequence of probability measures (μ_n) on $C([0, T]; \mathbb{R})$ is tight if and only if both

$$\lim_{\lambda \rightarrow \infty} \sup_{n \in \mathbb{N}} \mu_n(\{f : |f(0)| > \lambda\}) = 0 \quad (1)$$

and for all $\varepsilon > 0$,

$$\lim_{\delta \rightarrow 0} \sup_{n \in \mathbb{N}} \mu_n\left(\left\{f : \max_{|t-s|<\delta} |f(t) - f(s)| > \varepsilon\right\}\right) = 0. \quad (2)$$

Hint: Recall the following version of Arzelá-Ascoli: The closure of a set $A \subset C([0, T]; \mathbb{R})$ is relatively compact if and only if both

$$\sup_{f \in A} |f(0)| < \infty$$

and

$$\lim_{\delta \rightarrow 0} \sup_{f \in A} \max_{|t-s|<\delta} |f(t) - f(s)| = 0.$$

Exercise 11.2

Define \mathcal{F} to be the collection of step functions with compact support in \mathbb{R}_+ , that is, of functions f which can be written

$$f = \sum_{j=1}^n \lambda_j \mathbb{1}_{(t_{j-1}, t_j]}$$

for constants λ_j . Write

$$\mathcal{E}^f := e^{\int_0^T f(s) dW_s}.$$

Prove that the set $\{\mathcal{E}^f : f \in \mathcal{F}\}$ is total in $L^2(\Omega, \mathcal{F}_T, \mathbb{P})$ where $\mathcal{F}_T = \bigvee_{s=0}^T \sigma(W_s)$ (that is, its span is dense).

Exercise 11.3

For any given $F \in L^2(\Omega, \mathcal{F}_T, \mathbb{P})$, where $\mathcal{F}_T = \bigvee_{s=0}^T \sigma(W_s)$, prove that there exists a unique predictable process H such that

$$F = \mathbb{E}(F) + \int_0^T H_s dW_s.$$

Exercise 11.4

Let $T : \mathcal{X} \rightarrow \mathcal{X}$ be a measurable mapping, and $\xi : \Omega \rightarrow \mathcal{X}$ satisfy that $T\xi = \xi$ in law. Show that for every measurable function f , the discrete time process $(f(T^n \xi))_n$ is stationary.